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GFD Fundamentals

λ → longitude

θ → latitude

  f = 2Ωsinθ Coriolis parameter

  Ω = 7.3x10−5 s−1 Earth rotation

  
R

0
=

U

fL
Rossby # [< 1 for wide range of motions]
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Equations in non-rotating frame:

   

∂ρ
∂t

+∇ ⋅ ρu = 0 continuity

ρ
Du

Dt
= −∇p + ρ∇φ + F(u) momentum 

energy

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

   
F(u) = µ∇2u +

µ
3
∇(∇ ⋅u) Frictional force
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Equations in rotating frame:

   

ρ
Du

Dt
+ 2Ω× u

⎡

⎣
⎢

⎤

⎦
⎥ = −∇p + ρ∇Φ + F(u)

Φ = φ + 1

2
Ω× r

2

• Coriolis force is ⊥  to  U  and hence does no work.

• Total derivative of all scalars (density, energy) are unchanged in rotating
frame.
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(Approximate) Equations of motion:

  

Du

Dt
= −

1

ρ
∂p

∂x
+ f + u

tanθ
a

⎛
⎝⎜

⎞
⎠⎟

v + Fλ

  

Dv

Dt
= −

1

ρ
∂p

∂y
− f +

u tanθ
a

⎛
⎝⎜

⎞
⎠⎟

u + Fθ

  

Dw

Dt
= −

1

ρ
∂p

∂z
− g + F

z

Here x, y, z are curvilinear coordinates along east, north and local vertical directions.

  
Fλ , Fθ  and F

z
 are frictional forces towards east, etc.; a is Earth radius.
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f-plane model

Coriolis parameter   f = 2Ωsinθ  varies with latitude.  Variation is important only for very

long time scales or very long length scales (several weeks or  > 10
3

 km) and otherwise

  f0
= 2Ωsinθ

0
 can be taken in model.

β -plane model

Alternatively one can take a linear approximation to f as

  f = f
0
+ β y

  
β =

2Ωcosθ
0

a

and such models are referred to as β -plane models.



6

Taylor-Proudman Theorem

Homogeneous, frictionless fluid, 
01R

  
− fv = −

1

ρ
∂p

∂x

  
  
fu = −

1

ρ
∂p

∂y

    
  
g = −

1

ρ
∂p

∂z

Eliminating  p  gives 
  
f

∂v

∂y
+
∂u

∂x

⎛
⎝⎜

⎞
⎠⎟
= 0 , using continuity this implies

  

∂w

∂z
= 0

Also differentiating v and u equations by z gives

  

∂v

∂z
=
∂u

∂z
= 0

or

   

∂u

∂z
= 0 Taylor-Proudman Theorem
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Consequence of Taylor-Proudman Theorem

−   Horizontal velocity field has no vertical shear and motion is two dimensional (in
columns).

For dye released at A above the cylinder,
the dye goes around the imaginary cylinder
above the actual cylinder.
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– Geostrophic flow

Also note that 
  
u = −

1

ρ f

∂p

∂y
,  v =

1

ρ f

∂p

∂x
 and 

   
u

H
 is ⊥  to 

∂p

∂x
,
∂p

∂y

⎛
⎝⎜

⎞
⎠⎟

 ,  which is the

pressure gradient.  Thus motion is not down-gradient but across-gradient.  Fluid particles
do not move from high pressure to low pressure as in an inviscid non-rotating flow but
move along isobars, which are (approximate) streamlines.

In the Northern Hemisphere, with a counterclockwise mean rotation, implies f is positive
and currents flow with high pressure to their right.
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Vorticity dynamics

   
Γ =

A∫∫ ω ⋅n dA =
c∫ u ⋅ dr

Γ→
Circulation measures strength of vortex-tube

    

dΓ
dt

= (2Ω× u) ⋅ dr
c
∫ −

∇p

ρ
⋅ dr

c
∫ +

F

ρ
⋅ dr

c
∫

Circulation of relative vorticity (absolute vorticity   ωa
=ω + 2Ω ) can increase due to

these three effects.
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1.  Coriolis force

  

dΓ
dt

< 0

Also in the presence of planetary vorticity, relative motions induct this and large scale
motions are usually not free of relative vorticity.

2.  Pressure term

    
−

c∫
∇p

ρ
⋅ dr =

A∫∫ ∇ ×
∇p

ρ
⎛
⎝⎜

⎞
⎠⎟
⋅n dA

   
=

A∫∫
∇ρx∇p

ρ2
⋅n dA

If surfaces of constant pressure do not coincide ⇒  baroclinic flow.

If the flow is baroclinic, relative circulation will change if average normal component on
A is non-zero.

Light and heavy fluids experience the same
force, and so the light fluid will rise faster
creating counterclockwise circulation.

If the density field is convected with the fluid,
the resulting circulation will align the density
and pressure surfaces.

3.  Frictional effects are diffusive (heat analogy).
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Non-geostrophic flow

If fluid is not rotating rapidly enough, and other acceleration terms cannot be neglected
compared to coriolis, but still considered homogeneous and inviscid

  

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −

1

ρ
0

∂p

∂x

  

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
− fu = −

1

ρ
0

∂p

∂y

  
−

1

ρ
0

∂p

∂z
= 0 considering departures from hydrostatic equilibrium

  

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

• If u, v are independent of z initially, they will remain so.

• This is barotropic flow:

  

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −

1

ρ
0

∂p

∂x

  

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
− fu = −

1

ρ
0

∂p

∂y

This is superficially similar to geostrophic flow in that there is no vertical structure, but
here the flow is not required to be aligned with the isobars and can possess vertical
velocity.

  

∂w

∂z
= −

∂u

∂x
+
∂v

∂y

⎛
⎝⎜

⎞
⎠⎟
≠ 0

A vertical velocity varying linearly with depth can exist enabling the flow to support flow
across isobaths (surfaces of constant depth).
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Integrating

  

∂u

∂x
+
∂v

∂y

⎛
⎝⎜

⎞
⎠⎟ b

b+h

∫ dz + [w]b
b+h = 0

with 
zbhw=+

  
=

∂
∂t

(b + h) + u
∂
∂x

(b + h) + v
∂
∂y

(b + h)

 
w

z=b
= u

∂b

∂x
+ v

∂b

∂y

so that we have

  

∂h

∂t
+

∂
∂n

(hu) +
∂
∂y

(hv) = 0

and  w  has been eliminated.

Since the fluid is homogeneous, p is independent of z.  For absence of pressure variation
above fluid surface (e.g. uniform atmospheric pressure over the ocean), dynamic pressure
is

  p = ρ
0
g(h + b)

For flat bottom we have

 

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g

∂h

∂x

 

∂v

∂t
+ u

∂v

∂n
+ v

∂v

∂y
− fu = −g

∂h

∂y

  

∂h

∂t
+

∂
∂x

(hu) +
∂
∂y

(hv) = 0   

Which are they well known Shallow water equations.
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Conservation of potential vorticity

If we retain the acceleration terms by 
  
−∂

y
B

1
+ ∂

x
B

2  to obtain

  

D

Dt
f +

∂v

∂x
−
∂u

∂y

⎛
⎝⎜

⎞
⎠⎟
+

∂u

∂x
+
∂v

∂y

⎛
⎝⎜

⎞
⎠⎟

f +
∂v

∂x
−
∂u

∂y

⎛
⎝⎜

⎞
⎠⎟
= 0

 
f +

∂v

∂x
−
∂u

∂y
= f +ζ

Since the horizontal flow has no depth dependence, there is no vertical shear and hence
no horizontal vorticity

or
  

D

Dt
f +ζ( ) + ∂u

∂x
+
∂v

∂y

⎛
⎝⎜

⎞
⎠⎟

( f +ζ ) = 0

Also can write the continuity equation as

  

D

Dt
h +

∂u

∂x
+
∂v

∂y

⎛
⎝⎜

⎞
⎠⎟

h = 0

And hence

  

D

Dt

f +ζ
h

⎛
⎝⎜

⎞
⎠⎟
= 0

 
q =

f +ζ
h

   is potential vorticity and is conserved.

For rapidly rotating flows 
   

R
0
=

U

ΩL
1

⎛
⎝⎜

⎞
⎠⎟

 have   ζ  f  and

 
q =

f

h
and if   f  const  (geophysical flow of modest extent)

each fluid column must conserve its height h.  If the top is horizontal, then fluid parcels
must follow isobaths.
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Primitive equation AGCM

  

∂u

∂t
= −u ⋅∇u −ω

∂u

∂p
+ f k × u − ∇Φ + F

M

  

∂T

∂t
= −u ⋅∇T −ω

kT

p
−
∂T

∂p
+

Q


rad

C
p

+
Q


con

C
p

+ F
H

  

∂q

∂t
= −u ⋅∇q −ω

∂q

∂p
+ E − C + F

q

 

∂ω
∂p

= −∇ ⋅u

 

∂Φ
∂p

= −
RT

p

 FM
→   friction term for momentum

  
F

H
, F

q
→   friction term for heat and moisture

 q → specific humidity

  E,C →   rates of evaporation and condensation (clouds)

Φ→ geopotential

   Q


rad ,Q


con , E,C   “model physics”

- zero, 1D, 2D, full models.


